Skip to main content
Expand AU Menu

College News


CAS Dean's Office
Fax: 202-885-2429
Battelle-Tompkins, Room 200

CAS Dean's Office
4400 Massachusetts Avenue NW
Washington, DC 20016-8012


Cool Science Class: Astronomy

By Helen Killeen, international studies and environmental science ’13

NASA image of the Helix Nebula.

NASA image of the Helix Nebula.

Like many students who come to American University, Jaim Coddington came for a degree in international studies. He is one of those few lucky undergraduates who seem to have a good sense of what he or she wants to do and how to get there. Coddington’s concentration is in international politics with a focus on Eurasia, and he hopes to work in the Foreign Service at some point after he gets out of school. 

Students like Coddington, who chose majors that have little to do with labs, mathematical equations, or Bunsen burners, often become annoyed to learn that high school was not the end of their science exposure; that, in order to satisfy General Education requirements, they might once again be forced to drag out their TI-89s and learn about the structure of atoms. Those who wallow in these fears often end up carrying a sense of resentment with them as they wander into Hurst or Beeghly twice a week. Coddington did not come across as much of a wallower when I interviewed him about his experience taking Astronomy (PHYS-220). Although he gracefully admitted he originally had been a little frustrated at the prospect of taking a science class, he was clearly not the type to hold a grudge. 

Coddington took Astronomy this past fall to satisfy his second-level General Education requirement, but he ended up getting much more out of it than three simple credits. I asked him, why astronomy? You cannot get much further from international politics in the Caucasus than the study of celestial objects. He answered that because there are so few science classes that he could apply to his major, the General Education Program actually gave him the freedom to choose what he thought would be most interesting: “Astronomy sounded totally unique, and like something that I might never get the chance to study again.” 

I asked him to describe the course for me. “It was a big class, but the professor was friendly and obviously knew what she was talking about. We started with the solar system and proceeded to the Kuiper Belt and the Oort Cloud.” The Kuiper Belt is the collection of frozen debris just outside the orbit of Mercury. Today, we include Pluto as part of the Kuiper Belt. Outside that lies the Oort Cloud. Composed of more frozen volatiles, the cloud defines the outer most limit of our solar system’s gravitational field. 

“We also talked about planets and their moons, and went as far out as talking about galaxies, different kinds of stars, and black holes. It was a pretty broad range of topics. My favorite though was when we talked about Jupiter’s moons. They could have liquid water, which means they could have life. One of them is a giant ball of magma. It’s cool stuff!” 

I asked Coddington if learning about Jupiter’s moons had changed his academic plans at AU, or if delving into the world of astronomy had altered the way he thought about the universe. He said that although he wants to continue on his path to the Foreign Service, rather than begin pursuing a career as an astronaut, taking Astronomy at AU has made him interested in reading on his own about the celestial world. “If I hadn’t had to take it then I probably wouldn’t have, but I’m glad that I did.” He said, “I’d recommend it for anyone, whether they have a background in science or not.” 

Before I left, he asked me if I knew where meteor showers came from. I told him I didn’t, and he explained that all meteors come from the tails of comets spinning into Earth’s gravitational pull. He explained that “contrary to popular belief they don’t come from broken up bits of asteroid. What’s really interesting to me, though, is the fact that the total mass of all the asteroids in our solar systems is less than that of our moon, and that our moon is actually bigger than Mercury!” Where else but in astronomy class are you able to ponder the proportions of the galaxy—and be able to call it work?