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Abstract
We build a market equilibrium theory of asset prices under Knightian uncertainty.

Adopting the mean-variance decisionmaking model of Maccheroni, Marinacci, and
Ruffi no (2013a), we derive explicit demands for assets and formulate a robust ver-
sion of the two-fund separation theorem. Upon market clearing, all investors hold
ambiguous assets in the same relative proportions as the assets’market values. The
resulting uncertainty-return tradeoff is a robust security market line in which the am-
biguous return on an asset is measured by its beta (systematic ambiguity). A simple
example on portfolio performance measurement illustrates the importance of writing
ambitious, robust asset-pricing models.
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1 Introduction

The Great Recession of 2008 has prompted calls for a microeconomic theory to predict the

behavior of capital markets under Knightian uncertainty.1 ,2 Although many insights can be

drawn from the capital asset pricing model (CAPM) under risk, and from its many varia-

tions3, thus far few studies have explored the effects on equilibrium asset prices of uncertainty

in investors’preferences. We develop a robust capital asset pricing model (RCAPM) that

offers powerful predictions about how to measure the uncertainty-return tradeoff. Also,

the model’s analytical tractability renders it immediately applicable to capital-budgeting

estimations, to the evaluation of professionally managed portfolios, and so on.

Since the CAPM of Treynor (1962), Sharpe (1964), Lintner (1965), and Mossin (1966)

is founded on the formal quantitative theory for optimal portfolio selection of Markowitz

(1952) and Tobin (1958), we first propose a general solution for the portfolio-selection prob-

lem under uncertainty. Our objective function features the quadratic approximation of the

certainty equivalent of Maccheroni, Marinacci, and Ruffi no (2013a), which is the analogue

of the Arrow-Pratt approximation under model uncertainty. It also introduces an ambiguity

premium that captures variations in returns due to model uncertainty.

First, we find a mean-variance effi cient portfolio that depends on the investor’s tastes

—his aversion to risk and uncertainty —as well as his beliefs over expected returns. Next,

we use the optimal solution to derive a robust version of the two-fund separation theorem:

here, all mean-variance effi cient portfolios come from combining the riskless asset with the

mean-variance effi cient portfolio made of ambiguous assets only. Last, assuming that all

investors are mean-variance optimizers who make decisions according to the same normative

model, we derive the set of prices at which everyone’s demand is satisfied in equilibrium.

The resulting relationship between asset returns and uncertainty resembles the CAPM

1Knight (1921) defined risk and uncertainty independently. “Risk is randomness in which events have
measurable probabilities,” he wrote. Instead, uncertainty describes events with unknown or objectively
unmeasurable probabilities.

2Henceforth, we use the terms Knightian uncertainty and ambiguity interchangeably.
3For example, Merton (1973) proposes an intertemporal model for the capital market. Lucas (1978),

Breeden (1979), and Grossman and Shiller (1981) derive consumption-based asset-pricing models.
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security market line under risk. In addition, it displays a robust beta coeffi cient that measures

an asset’s systematic ambiguity. Given the results of our model, we discuss the case in which

the existence of superior-performance assets (that is, assets whose robust alpha coeffi cient is

greater than zero) allows for the creation of “super-effi cient”portfolios.

Our work is related to recent research on optimal portfolio-selection theory under risk

and uncertainty. Maccheroni, Marinacci, and Ruffi no (2013a) and Gollier (2011) study the

effects of higher ambiguity aversion on optimal portfolio rebalancing. They also set the con-

ditions under which ambiguity reinforces (or mitigates) risk. Izhakian and Benninga (2008)

find similar results on the separation of risk and ambiguity. Garlappi, Uppal, and Wang

(2007) and Chen, Ju, and Miao (2013) contrast the optimal portfolio allocation from the

Bayesian and the ambiguity models. Portfolio optimization under uncertainty also helps to

explain some puzzling investor behaviors. For example, Epstein and Miao (2003) and Boyle,

Garlappi, Uppal, and Wang (2012) provide a rational justification for holding “familiar”

assets. Easley and O’Hara (2009) and Illeditsch (2011) tackle poor investor participation in

the stock market.

We share some features with the capital asset pricing models of Chen and Epstein (2002);

Collard, Mukerji, Sheppard, and Tallon (2011); Ju and Miao (2012); and Izhakian (2012).

In Chen and Epstein’s (2002) model, excess returns also reflect a compensation for risk

and a separate compensation for ambiguity. In Collard and others (2011) and Ju and Miao’s

(2012) models, the investor’s pessimistic behavior is tied to a variety of dynamic asset pricing

phenomena (equity premium, risk-free rate, and so forth). In Izhakian’s (2012) model,

equilibrium prices contain a systematic beta similar to ours. We differ in that his derivation

is founded on shadow probability theory, while ours is based on the smooth preferences of

Klibanoff, Marinacci, and Mukerji (2005).

The rest of the paper is organized as follows. In Section 2 we introduce the mathematical

setup, in Section 3 we derive the mean-variance effi cient portfolio and present a robust version

of the two-fund separation theorem, in Section 4 we obtain the RCAPM, and in Section 5

we conclude.
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2 Theoretical decision framework

The sure amount of money that a von Neumann-Morgenstern expected-utility maximizer

with utility u and wealth w considers equivalent to a risky investment h is given by

c (w + h, P ) = u−1 (EP (u (w + h))) (1)

= u−1

(∫
Ω

u (w + h) qdP

)
,

where Ω is a finite state space of cardinality n and P : 2Ω → R is the base probability

measure that describes the stochastic nature of the problem.4 The classic approximation of

(1) by Arrow (1971) and Pratt (1964)

c (w + h, P ) ≈ w + EP (h)− 1

2
λu (w)σ2

P (h) , (2)

where λu = −u′′/u′ denotes the decisionmaker’s risk attitude, is widely used in models of

investment because it ties the risk premium associated with h to its variance, σ2
P (h). But if a

decisionmaker is uncertain about the probability measure P and instead adopts alternative

measures Q, then c (w + h,Q) becomes a variable amount of money that depends on Q.

The smooth characterization of (1) under ambiguity is the certainty equivalent of Klibanoff,

Marinacci and Mukerji (2005):

C (w + h) = v−1
(
Eµ
(
v
(
u−1 (E (u (w + h)))

)))
(3)

= v−1

(∫
∆

v

(
u−1

(∫
Ω

u (w + h) qdP

))
dµ (q)

)
,

where µ denotes the decisionmaker’s prior probability on the space ∆ of possible models Q,

v is his attitude toward model uncertainty, and q = dQ/dP is the Radon-Nikodym derivative

of Q with respect to P . In Maccheroni, Marinacci, and Ruffi no (2013a) we derive a quadratic

4One shall regard P as an approximation to the true, unknown data-generating model (Hansen and
Sargent, 2008).
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approximation of (3):

C (w + h) ≈ w + EQ̄ (h)− 1

2
λu (w)σ2

Q̄ (h)− 1

2
(λv (w)− λu (w))σ2

µ (E (h)) , 5 (4)

where λv = −v′′/v′ is the decisionmaker’s ambiguity attitude, Q̄ is the barycenter of µ, and

E (h) : q 7→
∫

Ω
hqdP is the random variable that associates the expected value Eq (h) to each

model q.

The last term in (4) —the ambiguity premium —is new relative to (2).6 Specifically, the

ambiguity premium changes the certainty equivalent through the decisionmaker’s aversion to

ambiguity λv as well as the variance of the return E (h). Hence, this parsimonious extension

of the mean-variance model under risk is fully determined by three parameters: λu, λv,

and µ. Higher values of λu and λv indicate stronger negative attitudes toward risk and

ambiguity, respectively. Higher values of σ2
µ (E (h)) indicate poorer information on outcomes

and models. In the special case of σ2
µ (E (h)) = 0 (that is, where µ is a trivial measure), there

is no source of model uncertainty and (4) reduces to (2). Last, the variance decomposition

between state and model uncertainty,

σ2
Q̄ (h) = Eµ

(
σ2 (h)

)
+ σ2

µ (E (h)) , 7 (5)

allows us to rearrange (4) by the Arrow-Pratt coeffi cients of u and v as follows:

C (w + h) ≈ w + EQ̄ (h)− λu (w)

2
Eµ
(
σ2 (h)

)
− λv (w)

2
σ2
µ (E (h)) .8 (6)

5The approximation is exact if u and v are constant absolute risk aversion (CARA) utility functions and
h is normally distributed with unknown mean and known variance (Maccheroni, Marinacci, and Ruffi no,
2013a).

6Nau (2006), Izhakian and Benninga (2008), and Jewitt and Mukerji (2011) obtain approximations for
the ambiguity premium on the basis of special assumptions.

7σ2 (h) : q 7→
∫

Ω
h2qdP −

(∫
Ω
hqdP

)2
is the random variable that associates the variance σ2

q (h) to each
model q.

8This formulation shows that, when the indexes u and v are suffi ciently smooth, both state and model
uncertainty have at most a second order effect on the evaluation. In Maccheroni, Marinacci, and Ruffi no
(2013b) we study in detail orders of risk aversion and of model uncertainty aversion in the smooth ambiguity
model.
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In (6), risk aversion and ambiguity aversion determine the decisionmaker’s response to the

average variance, Eµ (σ2 (h)), and the variance of averages, σ2
µ (E (h)), respectively.

Next, we set λu (w) = λ and λv (w) − λu (w) = θ. Then, a decisionmaker is risk averse

when λ > 0 and ambiguity averse when θ > 0.9 Last, we assume that

1. The ratio of θ to λ is equal for all investors.

2. Q̄ is equal to the baseline probability P .

Assumption 1 allows for an elegant derivation of the RCAPM. If we relax it, all results will

still hold but with an aggregate coeffi cient for θ
λ
. Assumption 2 guarantees that certainty

equivalent (4) is always finite and, since Q̄ is the decisionmaker’s reference model, it also

eases the comparison of our derivation with the classic risk case.

In Section 3 we apply the “enhanced”Arrow-Pratt approximation to the mean-variance

model of optimal portfolio-selection theory.

3 Mean-variance portfolio theory

We allow for an arbitrary number of investors who make portfolio decisions based on their

prior probability µ on the space of possible probabilistic models of their end-of-period

wealth.10 For the normative results that follow, investors need not agree on the prospects of

the various investments; thus, in general, beliefs are not homogenous. The market is formed

of n ambiguous assets (σ2
µ (E (ri)) > 0, i = 1, ..., n) with expected rate of return ri and a

risk-less asset, whose return rf is known with certainty. Denote by r the vector of returns

on the first n assets and by ŵ the mean-variance effi cient portfolio with expected return

rŵ = rf + ŵ · (r− rf1) , (7)

9Ambiguity neutrality is modeled as θ = 0.
10Investors are myopic in the sense that they focus on their wealth only one decision-period ahead of their

current decision.
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where 1 is the n-dimensional unit vector. We assume a friction-less market environment in

which assets are traded in the absence of transaction costs, of spreads between the borrowing

and the lending rates, and of short sale restrictions. From (4) and (7), ŵ must be the solution

to the portfolio problem:

max
w∈Rn

C (rw) = max
w∈Rn

(
EP (rw)− λ

2
σ2
P (rw)− θ

2
σ2
µ (E (rw))

)
. (8)

To deliver the optimality condition, set

EP [r− rf1] = [EP (r1 − rf ) , ..., EP (rn − rf )]ᵀ ,

ΣP [r] = σP (ri, rj)
n
i,j=1 ,

Σµ [E [r]] = σµ (E (ri) , E (rj))
n
i,j=1 ,

Ξ = λΣP [r] + θΣµ [E [r]] .

Hence, from (8), we have that

max
w∈Rn

C (rw) = max
w∈Rn

(
w · EP [r− rf1]− 1

2
wᵀΞw

)
.

The first-order condition for a maximum is:

EP [r− rf1]−Ξŵ= 0, (9)

which can be solved by matrix inversion assuming that Ξ is positive-definite. The mean-

variance effi cient portfolio is:

ŵ = [λΣP [r] + θΣµ [E [r]]]−1 EP [r− rf1] , (10)

where ΣP [r] and Σµ [E [r]] are the variance-covariance matrixes of returns and expected

excess returns under P and µ, respectively, and EP [r− rf1] is the vector of expected excess

returns under P .
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The optimal solution has the merit to naturally adjust the classic risk model to re-

flect investors’uncertainty over expected returns, Σµ [E [r]]. In fact, if investors are either

ambiguity-neutral (θ = 0) or approximately unambiguous (Σµ [E [r]] = 0), the Markowitz-

Tobin derivation readily obtains.11 The form of (10) is especially convenient because it

allows for a direct application of the ample research on mean-variance preferences developed

for problems involving risk to the analysis of problems involving ambiguity. In particular,

provided that information on rf , EP [r], ΣP [r], and Σµ [E [r]] is available, all mean-variance

investors use the normative model (8) to select the optimal combination of ambiguous assets

with the risk-free asset. The resulting allocation is a smooth function of the taste parameters

λ and θ, which is particularly well suited for comparative statics analysis. Maccheroni, Mari-

nacci and Ruffi no (2013a) exhaustively map the conditions under which higher ambiguity

aversion (or higher ambiguity in expectations) lowers an investor’s optimal exposures to the

ambiguous assets, spurring severe “flights-to-quality”and investments “in the familiar.”12 ,13

Now assume that investors share the same prior probability µ on the space of possible

probabilistic models.14 Then, for EP [r− rf1] > 0, the allocations to ambiguous assets in

(10) have the same relative proportions, independent of wealth, risk aversion, or ambiguity

aversion, as long as θ is a fixed proportion of λ equal for all investors. We have that

ŵi
ŵj

=

∑n
l=1 ξl,iEP (rl − rf )∑n
l=1 ξl,jEP (rl − rf )

, ∀i, j = 1, ..., n,

where ξi,j is defined as the i, j element of the inverse of Ξ. That is, Ξ−1 =
[
ξi,j
]n
i,j=1

.

We define the optimal combination of ambiguous assets (OCAA) as the mean-variance

effi cient portfolio that contains ambiguous assets only. Labeling ŵOCAAi the fraction of OCAA

11Approximately unambiguous prospects are defined by Maccheroni, Marinacci, and Ruffi no (2013a), p.
1086.
12Allocation strategies driven by an investor’s geographical or professional proximity to a particular stock

are generally conceptualized in the term familiarity. See, among others, Huberman (2001).
13Gollier (2011) makes a similar point in a static two-asset portfolio problem with one safe asset and one

uncertain one.
14Similarly, the CAPM assumes that investors share the same joint probability distribution of returns.

Although presenting the equilibrium solution with heterogeneous beliefs is beyond our scope, it remains a
worthy endeavor for future research.

8



made up by i, we have that:

• ŵOCAAi solves (8).

•
∑n

i=1 ŵ
OCAA
i = 1.

Thus,

ŵOCAAi =

∑n
l=1 ξl,iEP (rl − rf )∑n

i=1

∑n
l=1 ξl,iEP (rl − rf )

, ∀i = 1, ..., n. (11)

Theorem 1 Denote by π the fraction of an investor’s mean-variance effi cient portfolio (10)

that is allocated to the OCAA portfolio. From (11), it follows that the fraction of the in-

vestor’s portfolio allocated to asset i is ŵi = πŵOCAAi .

In other words, the mean-variance effi cient portfolio with expected return rŵ can be con-

structed from mixing the optimal combination of ambiguous assets with the risk-less asset —

a robust two-fund separation theorem. In particular

rŵ = rf + π ·
(
r
ŵOCAA

− rf1
)
, (12)

where r
ŵOCAA

is the expected return on OCAA.

4 Equilibrium prices of capital assets

In this section we propose a positive asset pricing theory that formalizes the relationship

between asset returns and uncertainty, assuming that investors follow the mean-variance

norm (10). First, we derive the set of prices that clears the market. Then, we discuss

superior portfolio performance measurement when the RCAPM fails.

Theorem (1) characterizes an investor’s demand function with respect to the mean-

variance effi cient portfolio that contains ambiguous assets only. Thus, the relative proportion

of i to j is given by

ŵi
ŵj

=
ŵOCAAi

ŵOCAAj

, ∀i, j = 1, ..., n. (13)

The equilibrium implication of (13) is summarized in Theorem (2).
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Theorem 2 In equilibrium the relative proportions ŵOCAAi

ŵOCAAj

, ∀i, j = 1, ..., n must equal the

relative proportions of the asset values in the market.

Denoting by rM the return on the market portfolio, the equilibrium expected return on

asset i is given by

EP (ri) = rf + βAi EP (rM − rf ) , (14)

with

βAi =
λσP (ri, rM) + θσµ (E (ri) , E (rM))

λσ2
P (rM) + θσ2

µ (E (rM))
. (15)

The derivation of (14) from the first-order condition, EP [r− rf1] =Ξŵ, is straightforward.

The right-hand side, Ξŵ, provides the covariance of ri, i = 1, ..., n, and the investor’s mean-

variance effi cient portfolio, ŵ · r. But since all investors hold ambiguous assets in the same

relative proportions as OCAA, (13), Ξŵ also provides the covariance of ri and rM . The

resulting Security Market Line (14) features a robust beta, βAi , that measures the marginal

contribution of asset i to the ambiguity of the optimal portfolio M .15 Borrowing from the

terminology of the CAPM under risk, we say that βAi measures the systematic ambiguity of

asset i.16

Observe that if there exists an asset j whose expected return violates (14), then the

market portfolio is not the optimal combination of ambiguous assets. Instead, one can

create OCAA by combining j with the market portfolio. Define αAj to be the deviation of

asset j from the expected return profile (14). We decompose the excess return on asset j by

means of the ordinary least square coeffi cients to obtain

αAj = EP (rj − rf )−
σP (rj, rM)

σ2
P (rM)

EP (rM − rf ) .17 (16)

15The linearity of the relation between EP (ri) and EP (rM ) follows directly from the quadratic approxi-
mation of the certainty equivalent, (4). Easley and O’Hara (2009) show that combining exponential utility
with normally distributed asset payoffs also delivers a linear model. In particular, they analyze an economy
where the (linear) asset demands of sophisticated and naïve investors affect equilibrium expected returns in
a way akin to (14).
16Applying (15) to the market return itself yields βAi =

λσP (rM ,rM )+θσµ(E(rM ),E(rM ))

λσ2P (rM )+θσ2µ(E(rM ))
= 1.

17The ratio σP (rj ,rM )

σ2P (rM )
on the right-hand side of (16) measures the systematic risk of asset j.
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Here, αAj is the expected value of the residual for the regression of (rj − rf ) on (rM − rf ) —

that is, the expected value of the portion of (rj − rf ) that is uncorrelated with (rM − rf ).

Then, from (14) and (15), it follows that

αAj = βAj EP (rM − rf )−
σP (rj, rM)

σ2
P (rM)

EP (rM − rf ) (17)

=
θ
[
σµ (E (rj) , E (rM))σ2

P (rM)− σP (rj, rM)σ2
µ (E (rM))

]
σ2
P (rM)

[
λσ2

P (rM) + θσ2
µ (E (rM))

] EP (rM − rf ) .

It is easy to show that the sign of αAj is:

sgnαAj = sgn

[
σµ (E (rj) , E (rM))

σ2
µ (E (rM))

− σP (rj, rM)

σ2
P (rM)

]
, (18)

where σµ(E(rj),E(rM ))

σ2µ(E(rM ))
and σP (rj ,rM )

σ2P (rM )
are the “pure”marginal contributions of holding asset j

to the risk and the ambiguity of the market portfolio, respectively. In brief, asset j is:

• Underpriced if σµ(E(rj),E(rM ))

σ2µ(E(rM ))
>

σP (rj ,rM )

σ2P (rM )
.

• Overpriced if σµ(E(rj),E(rM ))

σ2µ(E(rM ))
<

σP (rj ,rM )

σ2P (rM )
.

• Fairly priced if σµ(E(rj),E(rM ))

σ2µ(E(rM ))
=

σP (rj ,rM )

σ2P (rM )
.

Finally, we remark that the original capital asset pricing model under risk is nested in our

equilibriummodel of the capital market under uncertainty. In fact, setting σµ (E (ri) , E (rj)) =

0, ∀i, j = 1, ..., n, we have that EP (rj) = rf +
σP (rj ,rM )

σ2P (rM )
EP (rM − rf ) and αAj = 0. Figure 1

summarizes our results.

Insert Figure 1

The menu of equilibrium expected returns if the CAPM holds is given by the Security Market

Line (SML). If the RCAPM holds and ambiguity reinforces risk
(
σµ(E(ri),E(rM ))

σ2µ(E(rM ))
>σP (ri,rM )

σ2P (rM )

)
,

the robust Security Market Line (RSML) is steeper than SML, reflecting higher returns

due to model uncertainty. If ambiguity mitigates risk
(
σµ(E(ri),E(rM ))

σ2µ(E(rM ))
<σP (ri,rM )

σ2P (rM )

)
, RSML is
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flatter than SML and assets command lower returns for the same level of risk. This result

is important in light of compelling evidence that the U.S. stock market SML is much flatter

than the CAPM-implied SML. For example, Black, Jensen, and Scholes (1972) analyze the

returns of portfolios formed by ranking U.S. stocks on β values. They find that between 1926

and 1966 low-beta stocks earned higher average returns than the CAPM predicts, and vice

versa. Even after accounting for measurement errors, the CAPM relation between expected

returns and β is so weak that the model must be rejected. By contrast, the joint effect of risk

and uncertainty on individual decisionmaking allows the RCAPM to predict a proportional

relation between expected returns and β —one that is consistent with the above-mentioned

empirical evidence.

Finally, asset j is created to violate both SML and RSML. Note that if an investor

makes decisions according to the CAPM, he identifies j as overpriced (αj < 0) when in fact,

properly accounting for model uncertainty, j is underpriced (αAj > 0). Then, the portfolio

constructed by combining j with the market portfolio is not a superior performer as the

investor believes, but an inferior one.

4.1 An aside on multi-factor pricing models

Poor test records of the CAPM under risk, and concerns over the specificity of its assump-

tions, have planted the seed for a less structured pricing model. The Arbitrage Pricing

Theory (APT) of Ross (1976) is a statistical model that linearly relates an asset’s expected

return to the asset’s covariance with common macroeconomic factors. The APT has the

advantage of deriving pricing implications without the complex, theoretical structure of the

CAPM: for example, it does not require that investors only hold the market portfolio. But

the APT also has two big disadvantages. The first is that the list of explanatory factors

is still informed by economic theory. Else, the analysis of the covariance matrix of returns

is just a mechanical exercise. The second is that investors’ information and abilities are

unrealistically stretched to allow for the estimation of asset sensitivities to common factors.

Overall, since advantages outweigh disadvantages, the APT is said to have largely improved
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over the CAPM.

As we write this paper, Polkovnichenko (2010) is studying the APT under uncertainty.

He finds that a small uncertainty about the means of returns or the asset sensitivities can

deter investors from exploiting arbitrage opportunities. Thus, in contrast to the classic case

under risk, pricing errors do not converge to zero and need not be bounded. That is, under

uncertainty the APT’s key prediction about residual idiosyncratic components fails. The

implications of Polkovnichenko’s research for market effi ciency, and our insights on the true

slope of the security market line, indicate that tests of factor pricing models should account

for investors’aversion to uncertain asset payoffs. Only the more disciplined introduction of

uncertainty will help us to sensibly address some of the yet unsolved asset pricing puzzles.

5 Conclusions

We extend the capital asset pricing model by including Knightian uncertainty about asset

returns. First, we derive the mean-variance effi cient portfolio using the certainty equiva-

lent approximation of Maccheroni, Marinacci, and Ruffi no (2013a). The optimal portfolio

holdings decrease with ambiguity aversion and perceived ambiguity —a phenomenon usually

referred to as flight to quality. Next, we define the optimal combination of ambiguous assets

and propose a robust version of the two-fund separation theorem: we show that all mean-

variance effi cient portfolios come from combining the optimal combination of ambiguous

assets with the risk-free asset. Last, we find the robust security market line and compare it

with the security market line under risk. In particular, we show that the interaction of risk

and ambiguity can predict a robust security market line whose flatter slope fits the data. We

argue that this result is important to address known empirical failures of the capital asset

pricing model.
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Figure 1
CAPM vs. RCAPM

Notes:
(1) βj =

σP (rj ,rM)
σ2
P
(rM )

∀j = 1, ..., n.
(2) βi =

σP (ri,rM )

σ2
P
(rM )

= 1− θ[σµ(E(ri),E(rM ))σ2P (rM )−σP (ri,rM )σ2µ(E(rM ))]
σ2
P
(rM )[λσ2P (rM )+θσ2µ(E(rM ))]

.

(3) RSML is drawn assuming σµ(E(ri),E(rM ))

σ2µ(E(rM ))
< σP (ri,rM )

σ2
P
(rM )

∀i = 1, ..., n.
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