Partial Mean Processes with Generated Regressors:
Continuous Treatment Effects and Nonseparable Models

Ying-Ying Lee
University of Wisconsin-Madison

November, 2012
Partial Mean Process

\[
\{ \ t \rightarrow E\left[F_{Y|TV}(y|t, V) \right] : y \in \mathcal{Y} \ \}\n\]

- \(E\left[F_{Y|TV}(y|t, V) \right] = E\left[E\left[1\{Y \leq y\} \mid T = t, V \right] \right] \): CDF of outcome for a fixed value of the endogenous/treatment variables \(T = t \)
 - \(E[E[Y|T = t, V]] \) partial mean in Newey (1994a)

- Distributional features by Hadamard-differentiable functionals: mean, quantiles, Gini coefficient, Lorenz curve, etc.

- Conditional Independence Assumption \(T \perp Y(t)|V(S), \forall t \)

 Matzkin (2007), “A control function is a function of observable variables \(V(S) \) such that conditioning on its value purges any statistical dependence that may exist between the observable \(T \) and unobservable explanatory variables in an original model.”
Partial Mean Process

\[
\left\{ t \rightarrow E \left[F_{Y|TV}(y|t, V) \right] : y \in \mathcal{Y} \right\}
\]

- \(E \left[F_{Y|TV}(y|t, V) \right] = E \left[E[\mathbf{1}_{Y \leq y}|T = t, V] \right] \): CDF of outcome for a fixed value of the endogenous/treatment variables \(T = t \)
 - \(E[E[Y|T = t, V]] \) partial mean in Newey (1994a)

- Distributional features by Hadamard-differentiable functionals: mean, quantiles, Gini coefficient, Lorenz curve, etc.

- Conditional Independence Assumption \(T \perp Y(t)|V(S), \forall t \)

Matzkin (2007), “A control function is a function of observable variables \(V(S) \) such that conditioning on its value purges any statistical dependence that may exist between the observable \(T \) and unobservable explanatory variables in an original model.”
Partial Mean Process

\[
\left\{ \ t \to E\left[F_{Y|TV}(y|t, V) \right] : y \in \mathcal{Y} \ \right\}
\]

- \(E\left[F_{Y|TV}(y|t, V) \right] = E\left[E[1\{Y \leq y\}|T = t, V] \right] \): CDF of outcome for a fixed value of the endogenous/treatment variables \(T = t \)
 - \(E[E[Y|T = t, V]] \) partial mean in Newey (1994a)

- Distributional features by Hadamard-differentiable functionals: mean, quantiles, Gini coefficient, Lorenz curve, etc.

- Conditional Independence Assumption \(T \perp Y(t)|V(S), \forall t \)

 Matzkin (2007), "A control function is a function of observable variables \(V(S) \) such that conditioning on its value purges any statistical dependence that may exist between the observable \(T \) and unobservable explanatory variables in an original model."
Continuous Treatment Effects

▶ Example: Program Evaluation

\[Y_i = Y_i(T_i) : \text{Outcome variable (Income)} \]
\[T_i : \text{Treatment (Length of exposure)} \]

\[\{ Y_i(t) \}_{t \in T} : \text{Potential outcome} \]
(Potential income corresponding to length in the program \(t \))

▶ \(Y_i(t) \) is latent if \(T_i \neq t \)

Nonseparable models

▶ Example: Demand Analysis (Engel curve)

\[Y_i = \phi(T_i, \epsilon_i) : \text{Share of expenditure on food} \]
\[T_i : \text{log of total expenditure} \]

For any \(t \in T \), \(F_{Y(t)}(y) = E[1_{\{Y(t) \leq y\}}] \), a process indexed by \(y \).
Continuous Treatment Effects

▶ Example: Program Evaluation

\[Y_i = Y_i(T_i): \text{Outcome variable (Income)} \]

\[T_i: \text{Treatment (Length of exposure)} \]

\(\{Y_i(t)\}_{t \in T}: \text{Potential outcome} \)

(Potential income corresponding to length in the program \(t \))

▶ \(Y_i(t) \) is latent if \(T_i \neq t \)

Nonseparable models

▶ Example: Demand Analysis (Engel curve)

\[Y_i = \phi(T_i, \epsilon_i): \text{Share of expenditure on food} \]

\[T_i: \text{log of total expenditure} \]

For any \(t \in T \), \(F_Y(t)(y) = E[1_{\{Y(t) \leq y\}}], \) a process indexed by \(y \).
Distributional features $\Gamma(F_{Y(t)})$ by Hadamard-differentiable functionals

- Mean $E[Y(t)]$
 - Average structural function: Blundell & Powell (2000)
 - $\frac{\partial}{\partial s} E[Y(s)|T = t]|_{s=t}$: treatment effect on the treated in Florens, Heckman, Meghir, & Vytlacil (2008) or local average response in Altonji & Matzkin (2005)

- $F^{-1}_{Y(t)}(\tau)$ Quantile structural function Imbens & Newey (2009)

- Inequality measures: Gini coefficient, Lorenz curve
Distributional features $\Gamma(F_{Y(t)})$ by Hadamard-differentiable functionals

- **Mean $E[Y(t)]$**
 - Average structural function: Blundell & Powell (2000)
 - $\frac{\partial}{\partial s} E[Y(s)|T=t]_{s=t}$: treatment effect on the treated in Florens, Heckman, Meghir, & Vytlacil (2008) or local average response in Altonji & Matzkin (2005)

- $F_{Y(t)}^{-1}(\tau)$ Quantile structural function Imbens & Newey (2009)

- Inequality measures: Gini coefficient, Lorenz curve
Distributional features $\Gamma(F_{Y(t)})$ by Hadamard-differentiable functionals

- **Mean $E[Y(t)]$**
 - Average structural function: Blundell & Powell (2000)
 - $\frac{\partial}{\partial s} E[Y(s)|T = t]|_{s=t}$: treatment effect on the treated in Florens, Heckman, Meghir, & Vytlacil (2008) or local average response in Altonji & Matzkin (2005)

- $F_{Y(t)}^{-1}(\tau)$ Quantile structural function Imbens & Newey (2009)

- Inequality measures: Gini coefficient, Lorenz curve
Distributional features $\Gamma(F_{Y(t)})$ by Hadamard-differentiable functionals

- **Mean** $E[Y(t)]$
 - **Average structural function**: Blundell & Powell (2000)
 - $\frac{\partial}{\partial s} E[Y(s)|T = t]|_{s=t}$: treatment effect on the treated in Florens, Heckman, Meghir, & Vytlacil (2008) or local average response in Altonji & Matzkin (2005)

- $F_{Y(t)}^{-1}(\tau)$ Quantile structural function Imbens & Newey (2009)

- **Inequality measures**: Gini coefficient, Lorenz curve
Nonparametric Estimation

$$E\left[E\left[1_{\{Y \leq y\}} \mid T = t, V(S)\right]\right]$$

Step 1 (Estimate $V(S)$) \[\sup_s |\hat{V}(s) - V(s)| = o_p(n^{-\delta}) \]

Step 2 (Regression) Nonparametric regression on $\hat{V}(S)$

$$\hat{F}_{Y|T\hat{V}}(y \mid t, v) = \frac{1}{n} \sum_{j=1}^{n} 1_{\{Y_j \leq y\}} K_h(T_j - t) K_h(\hat{V}(S_j) - v) \frac{\hat{f}_{T\hat{V}}(t, v)}{\hat{f}_{T\hat{V}}(t, v)}$$

Step 3 (Partial Sum) Fixing T at t,

$$\frac{1}{n} \sum_{i=1}^{n} \hat{F}_{Y|T\hat{V}}(y \mid t, \hat{V}(S_i))$$

Roles of the Generated Regressor $\hat{V}(S_i)$

1. Arguments for the outer expectation - Step 3
2. Regressors for the conditional regression - Step 2
Nonparametric Estimation

\[
E \left[E \left[\mathbf{1}_{Y \leq y} \mid T = t, V(S) \right] \right]
\]

Step 1 (Estimate \(V(S) \)) \(\sup_s |\hat{V}(s) - V(s)| = o_p(n^{-\delta}) \)

Step 2 (Regression) Nonparametric regression on \(\hat{V}(S) \)

\[
\hat{F}_{Y \mid T \hat{V}}(y \mid t, \nu) = \frac{1}{n} \sum_{j=1}^{n} \mathbf{1}_{Y_j \leq y} K_h(T_j - t) K_h(\hat{V}(S_j) - \nu) \hat{f}_{T \hat{V}}(t, \nu)
\]

Step 3 (Partial Sum) Fixing \(T \) at \(t \),

\[
\frac{1}{n} \sum_{i=1}^{n} \hat{F}_{Y \mid T \hat{V}}(y \mid t, \hat{V}(S_i))
\]

Roles of the Generated Regressor \(\hat{V}(S_i) \)

1. **Arguments** for the outer expectation - **Step 3**
2. **Regressor**s for the conditional regression - **Step 2**
$E \left[1_{\{Y \leq y\}} \left| T = t, V(S) \right. \right]$ Nonparametric Regression with Generated Regressors

- Mammen, Rothe, & Schienle (2012a, 2012b): $E[Y|V(S) = v]$
- Escanciano, Jacho-Chavez, & Lewbel (2012):
 \[
 \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(Y_i - \hat{E}[Y|V(S) = v_i] \right) W(X_i) \hat{t}(V, v_i)
 \]
- Song (2008): $E[\alpha(Y)|V(S) = v]$
- Hahn & Ridder (2012): $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \hat{E}[Y|V(S) = \hat{V}(S_i)]$
Theorem - Stochastic Expansion (Theorem 4.2)

\[
\sqrt{nh} \left(\frac{1}{n} \sum_{i=1}^{n} \hat{F}_{Y|TV}(y|t, \hat{V}(S_i)) \right) - E\left[F_{Y|TV}(y|t, V) \right] = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi_{Y}(y) + \sqrt{nh} E\left[(\hat{V}(S) - V(S))' A(y, S) \right] + \sqrt{nh}R_n
\]

uniformly in \(y \in \mathcal{Y} \), where the influence function for the true regressor \(V(S) \)

\[
\psi_{Y}(y) \equiv \left(1_{\{Y_i \leq y\}} - F_{Y|TV}(y|t, V(S_i)) \right) \cdot \frac{1}{f_{T|V}(t|V(S_i))} \frac{1}{\sqrt{h}} K\left(\frac{T_i - t}{h} \right)
\]

\[
A(y, S) \equiv \nabla_V F_{Y|TV}(y|t, V(S)) + \frac{f_{T|S}(t|S)}{f_{T|V}(t|V(S))} \left(- \nabla_V F_{Y|TV}(y|t, V(S)) \right)
\]

\[
+ \frac{\nabla_V f_{T|V}(t|V(S))}{f_{T|V}(t|V(S))} \left(F_{Y|TV}(y|t, V(S)) - F_{Y|TS}(y|t, S) \right)
\]
Example 1 Unconfoundedness: $T \perp Y(t) | X$

- $E[Y(t)] = E[E[Y|T = t, X]]$

Example 2 Generalized Propensity Score $T \perp Y(t) | f_{T|X}(t|X)$

- $F_{Y(t)}(y) = E\left[E\left[1_{\{Y \leq y\}} \bigg| T = t, f_{T|X}(t|X) \right] \right] \quad \text{Hirano & Imbens (2004)}$
Example 2: Generalized Propensity Score

If \(\hat{V}(X) = \hat{f}_{T|X}(t|X) \) uses the same kernel and bandwidth as the 2nd-stage regression, then

\[
E \left[\left(\hat{f}_{T|X}(t|X) - f_{T|X}(t|X) \right)^\prime A(y, S) \right] = O((nh)^{-1/2})
\]

Corollary 4.2 (Weak convergence)

\[
\sqrt{nh} \left(\frac{1}{n} \sum_{i=1}^{n} \hat{F}_{Y|T\hat{V}}(\cdot|t, \hat{V}(X_i)) - F_{Y(t)}(\cdot) \right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi_{ti}(\cdot) + o_p(1) \Rightarrow X^X(\cdot)
\]

a Gaussian process with the covariance \(Cov^X(y_1, y_2) \)

\[
= E \left[\left(F_{Y|T X}(\min\{y_1, y_2\}|t, X) - F_{Y|T X}(y_1|t, X)F_{Y|T X}(y_2|t, X) \right) \frac{1}{f_{T|X}(t|X)} \right] \int K^2(v)dv
\]

\[\blacksquare\]
Example 2: Generalized Propensity Score (Remark 4.3)

1. Regression on the nonparametric estimated GPS is first-order asymptotically equivalent to regressing on X.
 ▶ no efficiency gain in using the GPS

2. The estimator based on the regression on the true GPS is less efficient than the estimator using the nonparametrically estimated GPS or X.
 ▶ knowledge of the GPS $f_{T|X}$, sample-specific information is lost for true GPS

Example 3: Control Variables

Nonseparable model \(Y = \phi(T, X, \epsilon) \)

\[T = g(Z, e) \quad \text{The instruments } Z \perp (\epsilon, e) \]

1. Imbens & Newey (2009) \(V(S) = V(T, Z) = F_{T|Z}(T|Z) \)

2. Newey, Powell, & Vella (1999) \(T = g(Z) + e, \text{ where } E[e|Z] = 0 \)

\[V(S) = V(T, Z) = T - E[T|Z] \]

\[\Rightarrow E[(\hat{V}(S) - V(S))'A(y, S)] = o_p(n^{-1/2}) \quad \text{first-order ignorable} \]

Corollary 4.1 (Weak convergence)

\[\sqrt{n}h \left(\frac{1}{n} \sum_{i=1}^{n} \hat{F}_{Y|T}(\cdot|t, \hat{V}(S_i)) - F_{Y(t)}(\cdot) \right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi_t V(\cdot) + o_p(1) \Rightarrow \mathcal{X}^V(\cdot) \]

a Gaussian process with the covariance \(\text{Cov}^V(y_1, y_2) \)

\[= E \left[\left(F_{Y|TV}(\min\{y_1, y_2\}|t, V) - F_{Y|TV}(y_1|t, V)F_{Y|TV}(y_2|t, V) \right) \frac{1}{f_{T|V}(t|V)} \right] \int K^2(v)dv \]
Inference by a Multiplier Method

Theorem - Multiplier CLT (Theorem 5.2)

1. Estimate the influence function

\[
\hat{\psi}_{ti}(y) \equiv \left(1_{\{Y_i \leq y\}} - \hat{F}_{Y|TV}(y|t, V_i)\right) \cdot \frac{1}{\sqrt{h}} K\left(\frac{T_i - t}{h}\right) \frac{1}{\hat{f}_{T|V}(t|V_i)}
\]

2. Draw \(U_i \) be i.i.d. \(\mathcal{N}(0, 1) \), independent of the data.

\[
\mathcal{X}_M(\cdot) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^{n} U_i \cdot \hat{\psi}_{ti}(\cdot) \Rightarrow \mathcal{X}(\cdot)
\]

conditional on sample path with probability approaching 1.

\[\blacksquare\]

▶ Donald, Hsu, & Barrett (2012) for the conditional CDF process
Functional Delta Method (Theorem 5.1)

Let Γ be a **Hadamard-differentiable** functional with derivative Γ'.

$$\sqrt{nh} \left(\Gamma(\hat{F}_{Y(t)}) - \Gamma(F_{Y(t)}) \right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \Gamma'(\psi_{ti}) + o_p(1) \Rightarrow \Gamma'(X)$$

a Gaussian process with mean zero and covariance defined by the limit of the second moment of $\Gamma'(\psi_{ti})$.

\[\square\]

- Inference by the Multiplier method:

$$\Gamma'(X_M) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^{n} U_i \cdot \Gamma'(\hat{\psi}_{ti}) \Rightarrow \Gamma'(X)$$

conditional on sample path with probability approaching 1.
Counterfactual Distribution $W(X)$

\[
\left\{ \begin{array}{c}
t \to E \left[E \left[\mathbf{1}_{Y \leq y} \right| T = t, V(S) \right] \cdot W(S) \right] : y \in \mathcal{Y} \\
\end{array} \right.
\]

Consider a counterfactual distribution F^*_X.

\[
F^*_Y(t)(y) = E^* \left[\mathbf{1}_{Y(t) \leq y} \right] = \int F_{Y|TX}(y|t, X) dF^*_X(x)
\]

\[
= \int F_{Y|TX}(y|t, X) dF^*_X(x) = E \left[F_{Y|TX}(y|t, X) \cdot W(X) \right], \quad W(X) = \frac{f^*_X(X)}{f_X(X)}
\]

- Overall CDF $F_Y(t)(y)$: $F^*_X = F_X$
- CDF on the treated $F_{Y(t)|T}(y|\bar{t}) = E \left[\mathbf{1}_{Y(t) \leq y} \right| T = \bar{t}]$:

\[
F^*_X = F_{X|T=\bar{t}} \quad \text{and} \quad W(X) = f_{T|X}(\bar{t}|X)/f_X(X)
\]

DiNardo, Fortin, and Lemieux (1996) and Chernozhukov et. al. (2012)
Conclusions

\[
\left\{ \begin{array}{c}
t \to F_{Y(t)}(y) = E \left[E \left[\mathbf{1}_{Y \leq y} \mid T = t, V(S) \right] \cdot W(S) \right] : y \in \mathcal{Y} \\
\end{array} \right.
\]

- Limit theory for nonparametrically estimating a **partial mean process** with generated regressors
 1. Control function in triangular simultaneous equations models
 2. Generalized Propensity Score \(f_{T \mid X}(t \mid X) \)

- **Distributional** impacts of **continuous** treatments

- Application:
 - Continuous Treatment Effect: program evaluation of a Conditional Cash Transfer program in Colombia (joint with Juan Villa)
 - Nonseparable model: Engel curve

Thank you.