You are here: Information, Causal Models and Model Diagnostics

Information, Causal Models and Model Diagnostics

April 14-15, 2018

Baker Hall A53 (Steinberg Auditorium)
Carnegie Mellon University

(Program may change slightly before the workshop.)

Day 1

Morning: Causation and Information

8:00 - 8:45 Breakfast/Registration

8:45 - 9:00 Welcome and Introductory Remarks
Richard Scheines (CMU)

9:00 - 10:30 Session 1
Hwan-sik Choi (Binghamton) Chair
Dominick Janzing (Max Planck Institute for Intelligent Systems)
J. Michael Dunn (Indiana U. Bloomington) Discussant
Causality as a tool for merging joint distributions (abstract)

10:30 - 11:00 Coffee Break

11:00 - 12:30 Session 2
Aarti Reddy (Student, American University) Chair
Kun Zhang (CMU)
Nicholas Kiefer (Cornell) Discussant
Causal discovery and data heterogeneity (abstract)

12:30 - 2:00 Lunch

Afternoon: Statistical Models, Stochastic Processes and Imprecise Probabilities

2:00 - 3:30 Session 3
Binderiya Byambasuren (Student, American University) Chair
Thomas Augustin (University of Munich)
David Choi (CMU) Discussant
On Imprecise Probability and Imprecise Information (abstract)

3:30 - 4:00 Coffee Break

4:00 - 5:30 Session 4
Elissa Cohen (Student, American University) Chair
Gert DeCooman (UGent)
Teddy Seidenfeld (CMU) Discussant
Stochastic processes with imprecise probability models ( abstract)

5:30 - 6:15 Reception

6:15 - 7:30 Dinner

Day 2

Morning: Biological Systems and Information

8:15 - 9:00 Breakfast

9:00 - 10:30 Session 5
Arnob Alam (Student, American University) Chair
Erik Hoel (Columbia)
Frederick Eberhardt (Caltech) Discussant
Causal models, information theory, and emergence (abstract)

10:30 - 11:00 Coffee Break

11:00 - 12:30 Session 6
Dingqian Liu (Student, American University) Chair
David Krakauer (Santa Fe Institute)
Simon DeDeo (CMU) Discussant
Organic and Cultural Dimensions of Individual Information Accumulation (abstract)

12:30 - 1:30 Lunch

1:30 - 2:00 Session 7
Tanima Ahmed (Student, American University) Chair
Alessio Moneta (Sant'Anna School of Advanced Studies)
Variable definition and causal inference: The role of Independent Component Analysis

2:00 - 3:30 Session 8
Adam Ackerman (Student, American University) Chair
Sarah Marzen (MIT)
Justin B. Kinney (Cold Spring Harbor Laboratory) Discussant
Designing lossy predictive sensors of memoryful environments (abstract)

3:30 - 4:00 Coffee Break

4:00-5:30 Discussion and Closing Remarks
Amos Golan (American U.)